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Abstract

Some flexible appendages of spacecraft are cantilever plate structures, such as sun plate and satellite antenna. Thus,

vibration problem will be caused by parameter uncertainties and environmental disturbances. In this paper, piezoelectric

ceramics patches are used as sensors and actuators to suppress the vibration of the smart flexible clamped plate. Firstly,

modal equations and piezoelectric control equations of cantilever plate are derived. Secondly, an optimal placement

method for the locations of piezoelectric actuators and sensors is developed based on the degree of observability and

controllability indices for cantilever plate. The bending and torsional modes are decoupled by the proposed method using

bandwidth Butterworth filter. Thirdly, an efficient control method by combining positive position feedback and

proportional-derivative control is proposed for vibration reduction. The analytical results for modal frequencies, transient

responses and control responses are carried out. Finally, an experimental setup of piezoelectric smart plate is designed and

built up. The modal frequencies and damping ratios of the plate setup are obtained by identification method. Also, the

experimental studies on vibration control of the cantilever plate including bending modes and torsional modes are

conducted. The analytical and experimental results demonstrate that the presented control method is feasible, and the

optimal placement method is effective.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

With the development of the space technology, space structures are becoming larger and more flexible,
whose modal frequencies and damping ratios are relatively low. In order to meet the high precision
requirement of large space structures, the application of active control for vibration suppression becomes
more and more important than ever before [1]. In recent years, smart materials, such as piezoelectric
transducers, have been used extensively as distributed sensors and actuators for vibration control of flexible
structures [2].

Smart structures have been attracted significant attention in the field of control and dynamics, and many
achievements have been made in the past ten years. For one-dimension analysis of beam, we shall follow the
ee front matter r 2006 Elsevier Ltd. All rights reserved.

v.2006.10.018

ing author. Tel.: +8620 8711 4635; fax: +8620 8711 3431.

esses: zhchqiu@scut.edu.cn, zhchqiu@126.com (Z.-c. Qiu).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2006.10.018
mailto:zhchqiu@scut.edu.cn,
mailto:zhchqiu@126.com


ARTICLE IN PRESS
Z.-c. Qiu et al. / Journal of Sound and Vibration 301 (2007) 521–543522
early work of Bailey and Hubbard [3], Crawley and Luis [4]. In 1985, Bailey and Hubbard [3] developed first
adaptive structure using polyvinylidene fluoride (PVDF) film as the distributed actuator to perform structural
vibration control of cantilever beam. Since then, analytical models for the smart beams, plates, and shells
integrated with the piezoelectric actuators and sensors have been established. Crawley et al. [4,5] discussed on
the modeling technique applicable to the beam structure bonded with piezoceramic (PZT) sensors and
actuators. Tzou and Fu [6], Fuller et al. [7], Clark et al. [8] developed a dynamics model for the vibration
response of a simply supported elastic rectangular plate using a piezoelectric patch of variable rectangular
geometry. In the case of flexible structures, the projection of physical displacements on a modal basis allows
the observation and the control of each mode by independent sensors and actuators. However, projection in
modal space, then modal reduction in the observation and control bands, leads to a risk of instability of the
non-controlled modes: spillover [10]. Therefore, in implementing the control of flexible structures, the problem
of spillover must be considered.

Many control algorithms were used to suppress the vibration, such as direct velocity feedback (DVFB)
control, acceleration feedback control and positive position feedback (PPF) control [12], etc. Independent
modal space control (IMSC) [9] is an effective method for vibration control of smart structures, in which the
collocated modal sensor and modal actuator are needed. Lee and Moon [11] have considered the design of
two-dimensional modal sensors. In their studies, it is more difficult to shape the sensor to obtain the necessary
sensor weighting since variation in the vibration profile occurs in both x and y directions. Bailey and Hubbard
[3] used induced strain actuation as part of output feedback, applied velocity feedback control algorithms to
suppress the vibration of cantilever beam. Fanson and Caughy [12] proposed the PPF control method based
on the modal displacement signal. The PPF controller is very effective in suppressing the specific vibration
mode, thus, maximizing the damping in target frequency band without destabilizing other mode. Shimon et al.
[13] studied a fully clamped plate problem theoretically and experimentally. In their studies, inertial actuators
or distributed strain actuators were utilized, and positive velocity feedback (PVF) and HN control methods
were adopted to suppress the first mode vibration of the plate.

Structure vibration suppression depends not only on control law design but also on sensors/actuators
selection and placement [14]. Sensors and actuators used in active control of smart structures have to be
located appropriately to ensure maximum control and measurement effectiveness. The locations of sensors
and actuators for an open-loop system influence the controllability and observability properties of the system.
One must modify the locations of sensors and actuators to obtain the required values of the controllability and
observability grammians. Thus, the placement of actuators and sensors is very important for effective control
of structure using smart materials. The methods for optimal placement of sensors s and actuator were
investigated by many researchers [14–18]. A typical solution to the location problem is found through a search
procedure. For large numbers of locations, the search for the number of possible combinations is
overwhelming and only a small selected subset is searched. This is time consuming and not necessarily the
optimal solution [15]. So, it is vital to find an optimal placement method for piezoelectric smart plate.

In this paper, active vibration control of smart flexible cantilever plate is investigated by using discrete
piezoelectric sensors and actuators. Optimal placement of sensors and actuators is processed based on
piezoelectric control equation. To suppress the first three vibration modes of the cantilever plate, including
bending modes and torsional mode, a controller by combining PPF and proportional-derivative (PD) is
presented. Both theoretical and experimental studies are carried out to verify the advantage of the presented
method.

The rest of the article is organized as follows: The modal equations and the piezoelectric control equations
with distributed piezoelectric actuators for cantilever plate including bending and torsional modes are
obtained in Section 2. In Section 3, the optimal placement method of piezoelectric sensors and actuators for
cantilever plate is given according to maximum observability and controllability rule by using H2 norm. In
Section 4, the control algorithm by combining PPF and PD is proposed, and its stability and advantages are
theoretically analyzed. The numerical simulations are carried out with different control methods. In Section 5,
an experimental setup of piezoelectric smart plate for active vibration control is designed and built up. The
modal frequencies and damping ratios of the plate system are identified experimentally. Based on these
parameters, the proposed control method for the first three vibration modes is designed to control the system.
Finally, the conclusions are given in Section 6.
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2. Basic equations

2.1. Modal equations of cantilever plate

Based on the hypothesis of Kirchhoff–Love, the free vibration equation of the two-dimensional rectangular
plate is [7]

Dp
q4

qx4
þ 2

q4

qx2qy2
þ

q4

qy4

� �
w x; y; tð Þ þ rph

q2w x; y; tð Þ

qt2
¼ 0, (1)

where w(x,y,t) is the transverse modal displacement, Dp ¼ Eph3=12 1� v2p

� �
is flexural rigidity, Ep is Young’s

modulus, vp is Poisson’s ratio, h is the thickness of the plate, rp is the density of plate material, x and y are the
coordinate variables of the plate, and t is time variable.

According to Ritz’s method, the total transverse displacement w(x,y,t) at any point on the plate can be
expressed as a time-dependent weighted sum of assumed spatial mode shape functions

w x; y; tð Þ ¼
X1
m¼1

X1
n¼1

W mn x; yð ÞZmn tð Þ, (2)

where the subscripts m and n denote the (m, n)th mode of vibration, Wmn(x,y) denote the modal function of
the plate, Zmn(t) denote the modal coordinate.

Because the analytical solution of the cantilever plate modes cannot be obtained directly, the modal trial
function method is used to express the modal functions approximately. These Ritz functions Wmn(x,y) are
products of modal functions corresponding to the two beams associated with the boundary conditions of the
plate. For cantilever plate, Wmn(x,y) are in turn products of assumed free-free beam modes, Yn(y), in the
chordwise direction and clamped-free beam modes, Xm(x), in the spanwise direction. They are expressed as
following [19]

W mn x; yð Þ ¼ X m xð ÞY n yð Þ, (3)

where

X m xð Þ ¼ cosh kmxð Þ � cos kmxð Þ �
sinh kmlð Þ � sin kmlð Þ

cosh kmlð Þ þ cos kmlð Þ

� sinh kmxð Þ � sin kmxð Þ½ �; m ¼ 1; 2; 3; . . . , ð4Þ

Y n yð Þ ¼

1; n ¼ 1;ffiffiffi
3
p

1�
2y

l

� �
; n ¼ 2;

sin knyð Þ þ sinh knyð Þ þ
cos knlð Þ � cosh knlð Þ

sin knlð Þ þ sinh knlð Þ
cos knyð Þ þ cosh knyð Þ½ �; nX3:

8>>>>><
>>>>>:

(5)

The potential energy U and kinetic energy T of the plate can be expressed as

U ¼
1

2
Dp

ZZ
q2w
qx2
þ

q2w

qy2

� �2

� 2 1� vp

� � q2w
qx2

q2w
qy2
�

q2w

qxqy

� �2
( )" #

dxdy ¼
1

2
qTKpq, (6)

T ¼
1

2
rph

ZZ
qw

qt

� �2

dxdy ¼
1

2
_qTMp _q, (7)

where Mp and Kp are the stiffness matrix and mass matrix of the plate, respectively; the dots denote the
derivatives with respect to time t; q is the modal coordinate vector, and it is

q ¼ Z11 Z21 Z12 . . . Zmn

	 
T
.
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Substituting the modal trial function (3) into Eqs. (6) and (7), the stiffness matrix and the mass matrix of the
plate can be derived. For simplification, let Fi ¼Wpq(x,y) ¼ Xp(x)Yq(y), and based on Eq. (2) and Refs. [8,25],
the ith row and the jth column elements of the stiffness matrix and mass matrix for the plate can be computed
using Eqs. (8) and (9), respectively

Kpij ¼
Eph3

12 1� v2p

� �Z a

0

Z b

0

q2Fi

qx2

q2Fj

qx2
þ

q2Fi

qy2

q2Fj

qy2

"
þvp

q2Fi

qx2

q2Fj

qy2
þ

q2Fi

qy2

q2Fj

qx2

 !
þ 2 1� vp

� � q2Fi

qxqy

q2Fj

qxqy

#
dxdy,

(8)

Mpij ¼ rph

Z a

0

Z b

0

Fi x; yð ÞFj x; yð Þdxdy. (9)

By using modal analysis method, the stiffness matrix and the mass matrix can be expressed as

Kp ¼ Dp X 22ð Þ � Y 00ð Þ þ X 00ð Þ � Y 22ð Þ
�

þ vp X 20ð Þ � Y 02ð Þ þ X 02ð Þ � Y 20ð Þ
� �

þ2 1� vp

� �
X 11ð Þ � Y 11ð Þ
� ��

, (10)

Mp ¼ rph X 00ð Þ � Y 00ð Þ
� �

, (11)

where sign � indicates Kronecker product; and

X
22ð Þ

ij ¼

Z a

0

X 00i X 00j dx; X
20ð Þ

ij ¼

Z a

0

X 00i X j dx,

X
02ð Þ

ij ¼

Z a

0

X iX
00
j dx; X

00ð Þ
ij ¼

Z a

0

X iX
0
j dx; X

11ð Þ
ij ¼

Z a

0

X 0iX j dx,

Y
22ð Þ

ij ¼

Z b

0

Y 00i Y 00j dy; Y
20ð Þ

ij ¼

Z b

0

Y 00i Y j dy,

Y
02ð Þ

ij ¼

Z b

0

Y iY
00
j dy; Y

11ð Þ
ij ¼

Z b

0

Y 0iY
0
j dy; Y

00ð Þ
ij ¼

Z b

0

Y iY j dy,

where the primes denote the derivatives with respect to space variable x.
According to the Rayleigh–Ritz’s method, the kth natural modal frequency ok of the plate is given as

ok ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lk Mp

	 
�1
Kp

	 
� �r
, (12)

where lk( � ) is the kth eigenvalue.
When the structural size and material parameters of the plate are known, the natural modal frequencies can

be calculated by solving Eq. (12). The calculated results are helpful to process the problem of the optimal
placement of sensors and actuators, and can be used in analytical study of active control algorithms for plate
system.

2.2. Piezoelectric control equations of the plate

In the experimental system, the piezoelectric sensors and actuators are bonded to the flexible structure using
strong adhesive material. The schematic diagram of cantilever plate with bonded rectangular actuators is
shown in Fig. 1. When the orientation angle b6¼0, both the bending modes and torsional modes can be
measured and controlled. When b ¼ 0, only the bending modes can be measured and controlled.

The electric current generated by the ith sensor element can be written as [8]

I i tð Þ ¼ �ri

Z Z
Sni

e31i
q3w
qx2qt

þ e32i
q3w

qy2qt
þ 2e36i

q3w
qxqyqt

� �
dxdy; i ¼ 1; 2; . . . ;Ns, (13)

where Sni(x1npxpx2n y1npypy2n) denotes the area of the ith piezoelectric sensor element; e31i and e36i denote
piezoelectric stress constants of the ith piezoelectric sensor; ri denotes the distance between the middle plane of
the ith sensor and that of the plate.
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Fig. 1. The schematic diagram of the piezoelectric smart cantilever plate.

Z.-c. Qiu et al. / Journal of Sound and Vibration 301 (2007) 521–543 525
From Eq. (13), the sensor’s output coefficients can be expressed as

sensori
mn ¼ �ri

Z Z
Sni

e31i

q2W mn x; yð Þ

qx2
þ e32i

q2W mn x; yð Þ

qy2
þ 2e36i

q2W mn x; yð Þ

qxqy

� �
dxdy. (14)

The magnitude of the induced strains can be expressed as

�n
pe ¼

d31n

han

V n, (15a)

�n
pe6 ¼

d36n

han

V n, (15b)

where �n
pe and �

n
pe6 are the resultant strains of the nth piezoelectric actuator; d31n and d36n are the piezoelectric

material strain constants; Vn is the applied voltage in the direction of polarization; han is the thickness of the
piezoelectric actuator.

The piezoelectric actuators will induce internal moments in both the x and y directions, which are only
present under the condition that the piezoelectric patch extends. These bending moments, mx and my, induced
by the actuators can be written as [7]

mx ¼ my ¼ Cn
0�pe H x� x1ð Þ �H x� x2ð Þ½ � H y� y1

� �
�H y� y2

� �	 

, (16)

where H( � ) is unit Heaviside (step) function; Cn
0 is the coefficient of the piezoelectric plate for the nth

piezoelectric patch, and it can be written as [7]

Cn
0 ¼ �

2

3

1þ vpen

1� vp

Ep h2
p Pn

1þ vp � 1þ vpen
� �

Pn

, (17)

Pn ¼ �
Epen

Ep

1� v2p

1� v2pen

3hanhp 2hp þ han

� �
2 h3

p þ h3
an

� �
þ 3hph2

an

, (18)

where Epen and vpen are Young’s modulus, Poisson’s ratio of the piezoelectric actuator, respectively; hp is the
half thickness of the plate.

Similarly, the induced torsional moment mxy can be expressed as

mxy ¼ Cn
0�pe6 H x� x1ð Þ �H x� x2ð Þ½ � H y� y1

� �
�H y� y2

� �	 

. (19)

The internal moments of the two-dimensional plate are specified by

Mx ¼ �Dp

q2w

qx2
þ vp

q2w
qy2

� �
, (20a)
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My ¼ �Dp
q2w
qy2
þ vp

q2w

qx2

� �
, (20b)

Mxy ¼ � 1� vp

� �
Dp

q2w
qxqy

� �
. (20c)

The modified independent modal space control (MIMSC) method [20] is employed. That is, one piezoelectric
actuator can control several modes at the same time. By assuming that the PZT patches do not significantly
affect the dynamics of the plate, and using classical thin plate theory, the equation of motion can be described as

q2 Mx �mxð Þ

qx2
þ 2

q2 Mxy �mxy

� �
qxqy

þ
q2 My �my

� �
qy2

� Cs _w� rphp €w ¼ 0. (21)

Substituting Eqs. (16)–(20) into Eq. (21), the equation of motion is obtained as

Dpr
4wþ Cs _wþ rph €wþ

XNa

i¼1

Ci
0�

i
pe d0 x� x1ið Þ � d0 x� x2ið Þ
	 


H y� y1i

� �
�H y� y2i

� �	 
n
þ Ci

0�
i
pe H x� x1ið Þ �H x� x2ið Þ½ � d0 y� y1i

� �
� d0 y� y2i

� �	 

þ 2Ci

0 �
i
pe6 d x� x1ið Þ � d x� x2ið Þ½ � d y� y1i

� �
� d y� y2i

� �	 
o
¼ 0, ð22Þ

where Cs is the structural damping operator, Na is the number of the piezoelectric actuators,
r2 ¼ q2=qx2 þ 2ðq2=qxqyÞ þ q2=qy2, d(x) is Dirac delta function, (x1i, y1i) and (x2i, y2i) are the down-left and
top-right coordinate of the ith piezoelectric actuator, respectively.

The piezoelectric control equation of the plate can be written as the standard state-space form

_z ¼ Azþ Bpup, (23)

ycurrent ¼ Cpz, (24)

where z ¼ ½Z11 � � � Zmn _Z11 � � � _Zmn�
T, z 2 R2 m�nð Þ�1 is the column vector composed of modal displacement and

modal velocity; ycurrent is the current output of the piezoelectric sensor. Matrix A is

A ¼
0 I

�O2 �2zO

" #
; A 2 R2 m�nð Þ�2 m�nð Þ
� �

; O ¼ diagðoijÞ; z ¼ diagðxijÞ,

where oij and xij are the (i, j)th modal natural frequency and damping ratio, respectively. Bp and Cp are
expressed as

Bp ¼M�1
Bp1

Bp2

" #
¼

0 � � � 0

..

. ..
.

0 � � � 0

M�1

piezo1
11 � � � piezoNa

11

..

. ..
.

piezo1mn � � � piezoNa

mn

2
66664

3
77775

2
666666666666664

3
777777777777775

,
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Cp ¼ Cp1Cp2

	 

¼

0 � � � 0

..

. ..
.

0 � � � 0

sensor111 � � � sensorNs

11

..

. ..
.

sensor1mn � � � sensorNs
mn

2
66664

3
77775

2
666666666666664

3
777777777777775

T

,

where Bp 2 R2 m�nð Þ�Na , ðBp1;Bp2 2 R m�nð Þ�NaÞ is the input matrix of the control value; up ¼ ½V 1; . . . ;VNa
�T,

ðup 2 RNa�1Þ is the control voltage of the actuator; Cp 2 RNs�2 m�nð Þ is the observed output matrix,
ðCp1;Cp2 2 RNs�ðm�nÞÞ; Ns is the number of the piezoelectric sensors.

The coefficients of the piezoelectric actuator are given by

Piezoi
mn ¼ � 1=Vi �

Z a

0

Z b

0

Ci
0 �

i
pe d0 x� x1ið Þ � d0 x� x2ið Þ
	 
n

� H y� y1i

� �
�H y� y2i

� �	 

þ Ci

0 �
i
pe H x� x1ið Þ �H x� x2ið Þ½ �,

� d0 y� y1i

� �
� d0 y� y2i

� �	 

þ 2Ci

0 �
i
pe6 d x� x1ið Þ � d x� x2ið Þ½ �

� d y� y1i

� �
� d y� y2i

� �	 
�
X m xð ÞY n yð Þdxdy, ð25Þ

where x ¼ (x1i+x2i)/2, y ¼ (y1i+y2i)/2.
Farther derivation of Eq. (25) yields

Piezoi
mn ¼ � 1=V i � Ci

0 �
i
pe

n
X 0m x2ið Þ � X 0m x1ið Þ
	 
 Z y2i

y1i

Y n yð Þdy

þ Ci
0 �

i
pe Y 0n y2i

� �
� Y 0n y1i

� �	 
 Z x2i

x1i

X m xð Þdx

þ2Ci
0 �

i
pe6 X m x2ið Þ � X m x1ið Þ½ � Y n y2i

� �
� Y n y1i

� �	 
o
. ð26Þ
3. Optimal placement of the piezoelectric sensors and actuators

3.1. Placement performance indices

An optimal placement method of piezoelectric sensors and actuators for cantilever plate is given according
to the maximum observability and controllability rule. Based on the sensors and actuators placement method
presented by Gawronski [15], an optimal placement method by using H2 norm is obtained, and the H2 norm
performance indices are derived for collocated sensors and actuators [21].

Let (A,B,C) be a state space representation of a linear system as given in Eqs. (23) and (24), the H2 norm of
the system is defined as [15]

Gk k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2p

Z þ1
�1

tr G� oð ÞG oð Þð Þdo
� �s

, (27)

where G(o) ¼ Cp(joI�A)�1Bp, is the transfer function of the control system.
Considering the ith mode and its state space representation (Ai,Bi,Ci), the closed form expression can be

obtained. Let Gi(o) ¼ Ci(joI�Ai)
�1Bi be the transfer function of the ith mode. When the structural damping
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ratio meets the condition xi51, the H2 norm of the ith mode can be expressed as

Gik k2 ffi
Bik k2 Cik k2

2
ffiffiffiffiffiffiffiffi
zioi

p , (28a)

where oi and zi are the natural frequency and damping ratio of the ith mode, respectively.
When only the jth actuator has an input, the corresponding H2 norm of the ith mode can be written as

Gij

 
2
ffi

Bij

 
2

Cik k2

2
ffiffiffiffiffiffiffiffi
zioi

p . (28b)

Because collocated placement of the sensors and actuators are adopted, the number of the sensors is equal to
that of the actuators, that is, Na ¼ Ns. For the ith vibration mode, the modal H2 norm of the jth input actuator
to the jth output sensor is

Gijj

 
2
ffi

Bij

�� �� Cji

�� ��
2
ffiffiffiffiffiffiffiffi
zioi

p , (29)

where the matrices Bij and Cji are Bp2 and Cp2, respectively.
By utilizing Eq. (29), the matrix norm is obtained. The optimal placement indices of the candidate locations

of sensors and actuators are also obtained by means of the matrix two-norm.
The placement index d2ij that evaluates the input of the jth actuator to the output of the jth sensor for the ith

mode is defined as

d2ij ¼ w
j
i Gijj

 
2
; i ¼ 1; . . . ; ðm� nÞ; j ¼ 1; . . . ;Ns, (30)

where w
j
iX0 denotes the weight assigned to the jth actuator and the ith mode.

The weight w
j
i reflects the importance of the ith mode and the jth actuator in application, and the

dimensions of the input (or output). In other words, it reflects the contribution of the controllability or
observability. In general, the dominant mode weights are relatively larger than the others. In application, it is
convenient to represent the two-norm placement indices as a placement matrix. The indices are

D2 ¼

d2 11ð Þ1 � � � d2 11ð Þj � � � d2 11ð ÞNS

� � � � � � � � � � � � � � �

d2i1 � � � d2ij � � � d2iNS

� � � � � � � � � � � � � � �

d2 mnð Þ1 � � � d2 mnð Þj � � � d2 mnð ÞNS

2
666666664

3
777777775
( ith mode,

*

jth mode ð31Þ

where the jth column consists of indices of the jth actuator for every mode, and the ith row is a set of the
indices of the ith mode for all actuators.

Now, the H2 norm optimal placement index for the jth actuator can be expressed as

Max : m2aj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm�n

i¼1�1

d22ij

s
, (32a)

Subject to :
lpe

2
pxpa�

lpe

2
;

kpe

2
pypb�

kpe

2
, (32b)

where lpe and kpe are the length and the width of the piezoelectric patch, respectively; a and b are the length
and the width of the plate, respectively.

The optimal index ensures the maximum placement index m2aj by selecting appropriate location of the jth
actuator.
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Remarks: when the orientation angle of the piezoelectric patches meets b ¼ 0, only the bending modes can
be measured and stimulated. When the orientation angle of the piezoelectric patches meets b ¼ p/4, both the
bending and torsional modes can be measured and stimulated by the piezoelectric patches. When pair patches
stuck on both sides of the plate anti-symmetrically, in other words, on one side the orientation angle is b ¼ p/
4, and on the other side opposite to the same location orientation angle is b ¼ 3p/4 stuck, thus, only the
torsional modes can be measured and stimulated theoretically.
3.2. Simulation results and analysis

The simulation studies of optimal placement are carried out using the proposed method. The plate is a
uniform aluminum plate with a rectangular cross section. The length, width and thickness of the rectangle
plate are a ¼ 1.50m, b ¼ 0.50m and h ¼ 1.50mm, respectively. The material properties of the plate are as
follows: Young’s elastic modulus Ep ¼ 7.0� 1010N/m2, Poisson’s ratio vp ¼ 0.33 and density rp ¼ 2700 kg/
m3. The structural damping ratio is 0.3%. The PZT patches are of 60mm� 15mm� 1mm in size.
The parameters of the PZT patches are as follows: Young’s elastic modulus Epe ¼ 6.3� 1010N/m2, Poisson’s
ratio vpe ¼ 0.30, density rpe ¼ 7650 kg/m3, piezoelectric strain constant is d31 ¼ d32 ¼ 166� 10�12m/V,
d36 ¼ 0m/V.

The nodal line of torsional modes is in the center of the chordwise direction. In order to obtain the torsional
moment for controlling the torsional modes, the piezoelectric sensors and actuators should be placed along
nodal line. For bending modes, the piezoelectric actuators can be placed evenly along the chordwise direction.
Then, the optimal locations of PZT patches are considered only in the spanwise direction.

Theoretically, the flexible plate is an infinite-dimensional system, however, the number of excited modes is
finite due to finite energy. Here, we retain only the first five modes. The retaining modes include three bending
modes and two torsional modes. The natural frequencies of bending modes are o11 ¼ 0.57Hz, o21 ¼ 3.59Hz,
o31 ¼ 10.06Hz; and those of torsional modes are o12 ¼ 3.81Hz, o22 ¼ 12.10Hz. The weights of bending
modes are 50, 10 and 1, respectively; and those of torsional modes are 25 and 5, respectively.

By using Eq. (32a), the optimal placement results for bending and torsional modes are shown in Figs. 2
and 3, respectively. From Fig. 2, one knows that for suppressing bending modal vibration, the piezoelectric
sensors and actuators should be located at the root of the plate, with orientation angle b ¼ 01. From Fig. 3,
one knows that for suppressing torsional vibration, sensors and actuators should be located at the tip of
the plate, with orientation angle b ¼ 451, as shown in Fig. 1. The collocated placement of sensors and
actuators is adopted.
Fig. 2. Performance index m2a1 for bending modes.
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Fig. 3. Performance index m2a2 for torsional modes.

Z.-c. Qiu et al. / Journal of Sound and Vibration 301 (2007) 521–543530
4. Control methods and simulation results

4.1. PPF and the controller by combining PPF and PD

PPF control method is used to suppress the vibration of large flexible structures presented by Fanson and
Caughey [12] and Goh and Caughey [23]. PPF controller has several distinguished advantages as compared
with the widely used velocity feedback control laws. It is insensitive to spillover that contributions from
unmodeled modes affect the control of the modes of interest [12,22]. As a second-order low-pass filter, a PPF
controller rolls off quickly at high frequencies. Thus, the approach is well suited to controlling the lower
modes of a structure with well-separated modes, as the controller is insensitive to the unmodeled high
frequency dynamics. In addition, PPF controller is easy to implement. Because of these advantages, PPF
controller along with smart materials, in particular PZT type of piezoelectric material has been applied to
many flexible systems to achieve active damping.

PPF controller requires that the sensor is collocated or nearly collocated with the actuator. In PPF
controller, structural position information is fed to a compensator. The output of the compensator, magnified
by a gain, is fed directly back to the structure. The equations describing PPF operation are given as [12,22]

Structure : €xþ 2zo_xþ o2x ¼ u; u ¼ ko2Z, (33)

Compensator : €Zþ 2zcoc _Zþ o2
cZ ¼ o2

cx, (34)

where x is a modal coordinate describing displacement of the structure, z and o are the damping ratio and
natural frequency of the structure, respectively; k is feedback gain, Z is the compensator coordinate, zc and oc

are the damping ratio and natural frequency of the compensator, respectively; u is the control input to the
system.

The PPF controller can be expressed as the following transfer function form by Laplace transform

u

x
¼

ko2o2
c

s2 þ 2zcocsþ o2
c

. (35)

The natural frequency required in the design of PPF controller cannot be known exactly, or may vary with
time. When the frequencies used in the PPF controller are different from those of the structure, the
performance of the PPF control will adversely affected. So oc should be equal or closed to o, hence, the
natural vibration characteristics should be known a priori either theoretically or experimentally in order to
successfully apply the PPF controller. This process is called the tuning process. Because the closed-loop system
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should be stable, the control gain should satisfy

0oko1. (36)

From Eq. (36) one can know that PPF control method has the localization of having a small control gain,
which must be below 1, and this small gain will weaken the performance of vibration suppression of flexible
structures. To overcome this problem, a control method by combining PPF and PD is proposed to improve
the performance of PPF controller, and the excellent results can be gained. The combining PPF and PD
control algorithm is given as

u ¼ ko2Z� Kpx� Kv
_x, (37)

where Kp40 and Kv40 are proportional and derivative gains of PD controller, respectively.
According to Routh’s stability theory, when oEoc, and to ensure the stability of the closed-loop system,

the control gain should satisfy

0oko1þ
Kp

o2
. (38)

Comparing Eq. (38) with Eq. (36), one can know that the control method by combining PPF and PD can
increase the range of feedback gain k, under the same condition that the stability of the system is guaranteed.

The decay rate of PPF control algorithm is

zbob ¼ zþ
kb
2a

� �
o. (39)

The decay rate of the control method by combining PPF and PD is

zbob ¼ zþ
kb
2a
þ

Kv

2o

� �
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Kp

o2

r
. (40)

Comparing Eq. (40) with Eq. (39), it can be seen that the control method by combining PPF and PD can
increase the decay rate of the system comparing to PPF method without decreasing the stability, so the
suppression of vibration can be gained dramatically.
4.2. Simulation results

Distributed structures are infinite-dimensional. Since it is impossible, in practice, to control or estimate the
entire infinity of modes, vibration control of such a structure is limited to a finite number of modes by the
modal truncation [24]. In this paper, only the first three vibration modes are targeted as the control modes,
including the first two bending modes and the first torsional mode. The rectangle thin plate is made of
fiberglass colophony. The length of the cantilever plate is 1.5m, and its width and thickness are 0.5m and
1.78mm, respectively. The material properties of plate such as Young’s modulus, Poisson’s ratio and mass
density are Eb ¼ 34.64Gpa, vb ¼ 0.33 and rb ¼ 1840 kg/m3, respectively. Using Eq. (12), one can obtain that
the natural frequencies of the first two bending modes are o11 ¼ 0.59Hz, o21 ¼ 3.47Hz. The natural
frequency of the first torsional mode is o12 ¼ 3.71Hz. The parameters of PZT patches are given in Section 3.2.
We assume that the nominal value of damping ratio is 0.006 for all the first three modes.

The purpose of simulation is to show that the proposed control algorithms can dissipate energy from
targeted modes, and the convergence and effectiveness of the optimal placement for the sensors and actuators.
The simulation results of the first bending mode are shown in Fig. 4. Fig. 4(a) shows the free vibration of the
first bending mode without control. Fig. 4(b) shows the calculated result of PD control, in which the control
gains of PD method are Kp ¼ 0.5 and Kd ¼ 0.15. Fig. 4(c) shows the simulation result of PPF control, in which
the parameters of PPF controller are zc1 ¼ 0.707, oc1 ¼ 0.57 and k1 ¼ 0.98, respectively. Fig. 4(d) shows the
result by the control method by combining PPF and PD. From the simulation results of the first bending mode
vibration control, one can know that the bending vibration is suppressed effectively by the adopted control
methods, and the proposed method shows perfect stability and convergence.
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Fig. 4. The numerical results of the first bending mode: (a) without control; (b) PD control method; (c) PPF control method; and (d) the

control method by combining PPF and PD.
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The simulation results of suppressing the first two bending modes vibration are shown in Fig. 5, where the
controller parameters are selected as those of the previous studies of the first bending mode. From the
simulation results, one can know that the proposed control method still shows good stability and convergence
even for the multi-mode control.

The simulation results of the first bending mode are shown in Fig. 6. Fig. 6(a) shows the free vibration
of the first torsional mode without control. Fig. 6(b) shows the calculated result of PD control, in which the
gains of PD controller are Kp ¼ 0.25 and Kd ¼ 0.06. Fig. 6(c) shows the simulation result of PPF control, in
which the parameters of PPF controller are zc3 ¼ 0.707, oc3 ¼ 3.75 and k3 ¼ 0.98. Fig. 6(d) shows the
numerical result of the control method by combining PPF and PD. From the simulation results of the first
torsional vibration mode, it can be seen that the proposed control method can suppress the torsional vibration
effectively.
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Fig. 5. The numerical results of the first two bending modes: (a) without control; (b) PD control method; (c) PPF control method; and (d)

the control method by combining PPF and PD.
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The piezoelectric sensors and actuators used in the simulation studies are located according to the optimal
placement results in Section 4, and the simulation results show that the placement is effective, and the
vibration can be suppressed quickly.

5. Experimental results

5.1. The experimental test-bed

The sketch map of the piezoelectric patch placed in the plate is shown in Fig. 7. The plate is made of
fiberglass colophony. The size and material parameters of the cantilever plate are given in Section 4.2. The
parameters of the discrete distributed surface-mounted PZT patches are given in Section 3.2. The piezoelectric
sensors and actuators are bonded to the host structure using strong epoxy adhesive material.
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Fig. 6. The numerical results of the first torsional mode: (a) without control; (b) PD control method; (c) PPF control method; and (d)

control method by combining PPF and PD.
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The photograph of the cantilever plate setup is shown in Fig. 8. The piezoceramic patches are bonded
symmetrically for bending modes and anti-symmetrically for torsional modes to each side of the plate. In total,
five sensed and control circuits are considered, and the serial number is from one to five. Serial number one is
the circuit at the clamped end, the fifth is the channel at the tip, and the rest can be deduced by analogy. Only
two circuits are used in the experiments, they are the first circuit and the fifth circuit for the bending and the
torsional modal vibration suppression, respectively. Thus, the sensors and actuators used to control the
bending and torsional vibration modes are approximately collocated.

Charger amplifiers YE5850 can amplify the signals measured by strain sensor. Power amplifier amplifies the
output control voltages to a suitable value. An industrial personal computer (IPC) is used for the data
acquisition and system control. The signals are converted from analog-to-digital and digital-to-analog through
a 16-channel 12-bit A/D board and 12-channel 12-bit D/A board, respectively. The sampling period of the
controller is 1ms.
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Fig. 7. The sketch map of the piezoelectric patch placed in the plate.

Fig. 8. Photograph of the experimental setup.

Z.-c. Qiu et al. / Journal of Sound and Vibration 301 (2007) 521–543 535
5.2. Experimental validation of the optimal placement of sensors and actuators

The high-frequency modes can be neglected on physical grounds, because such modes only play a secondary
role in determining the model’s essential characteristics and the energy concentrates on the low-frequency
modes primarily, thus, the high-frequency modes are truncated in the experimental system. In the
experimental studies, the first two bending modes and the first torsional mode are mainly considered in
these results.

In order to validate the optimal placement of sensors and actuators, stimulation analysis was carried out for
an actual plate, as shown in Fig. 8. After stimulation, the time-domain responses of the fourth channel and the
fifth channel are measured at the same time shown in Fig. 9. Because the orientation angle of the fourth and
the fifth channel sensors are 451, both the bending and the torsional modes can be simultaneously measured.
After fast Fourier transform (FFT) of the time-domain responses shown in Fig. 9, the frequency responses are
shown in Fig. 10. Comparing Fig. 10(a) with Fig. 10(b), it can be seen that the magnitudes of the bending
modes measured by the fourth channel are larger than those of the fifth channel. On the contrary, the
magnitude of the torsional mode measured by the fourth channel is less than that of the fifth channel. In other
words, the PZT patches located near to the root of the plate are helpful to measure and control the bending
modes; and those near to the tip end are beneficial to torsional mode. Therefore, the optimal placement carried
out in the previous section is proved.
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Fig. 9. Time-domain responses of the fourth and the fifth channel signals: (a) the fourth channel signal; and (b) the fifth channel signal.

Fig. 10. Frequency responses of the fourth and the fifth channel signals after FFT: (a) FFT of the fourth channel’s measurement; and (b)

FFT of the fifth channel’s measurement.
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In the vibration control of the flexible plate structure, the presence of uncontrolled or unmodeled modes
within the bandwidth of the closed-loop system results in the well-known phenomenon of ‘‘spillover’’. Figs. 9
and 10 show that the bending modes and torsional mode are coupled. Here, decoupling for bending and
torsional modes of the cantilever plate in measurement and control is realized by combining with Butterworth
band-pass filter as shown in Fig. 11. Besides, multiple PZT patches are used at the same time and the average
effect are introduced, so the observe spillover and control spillover can be prevented. Although the placement
of sensors and actuators is transversely non-collocated, we can make sure that the system is still a minimum
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Fig. 11. The analog band-pass Butterworth filter.

Fig. 12. The measured responses of the first bending mode without control: (a) time-domain response; and (b) frequency response.
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phased system, which resolves not only the local control problem caused by collocated placement, but also the
non-minimum phased problem due to lengthwise non-collocated placement. Thus, the optimal placement of
sensors and actuators can be adopted for vibration control of the cantilever plate. The next sections include
modal identification and implementation of control methods.
5.3. Experimental identification on modal frequencies and damping ratio of the system

After stimulation, the time-domain response and its curve envelope of the first bending mode without
control are depicted in Fig. 12(a), and one can obtain the frequency response shown in Fig. 12(b) by FFT. The
curve fitting of the frequency response can be expressed as the following transfer function approximately

G sð Þ ¼
9:410� 10�4 sþ 4:001ð Þ sþ 199:505ð Þ

sþ 0:0415� 3:518ið Þ sþ 0:0415þ 3:518ið Þ
. (41)

From Eq. (41) it can be derived that the zeros are z1 ¼ �199.45, z2 ¼ �4.001, the poles
p1,2 ¼ �0.041573.518i, the gain k ¼ 9.410� 10�4. The damping ratio and modal frequency of the first
bending mode are z1 ¼ 0.0118 and o1 ¼ 0.56Hz, respectively.
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Fig. 14. The free vibration responses of the first torsional mode: (a) time-domain response; and (b) frequency response.

Fig. 13. The responses of the first two bending modes without control: (a) time-domain response; and (b) frequency response.
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The time-domain response of the first two bending modes without control is depicted in Fig. 13(a), and the
frequency response shown in Fig. 13(b) can be obtained by FFT. The curve fitting of the frequency response
can be expressed as

G sð Þ ¼
4:277� 10�4 sþ 4:001ð Þ sþ 199:505ð Þ sþ 30:0ð Þ sþ 15:0ð Þ

sþ 0:0415	 3:518ið Þ sþ 0:126	 21:362ið Þ
. (42)

From Eq. (42) one can know that the zeros are z1 ¼ �199.45, z2 ¼ �30.00, z3 ¼ �15.00 and z4 ¼ �4.001; the
poles are p1,2 ¼ �0.041573.518i and p3,4 ¼ �0.126721.362i; the gain of the system is k1 ¼ 4.277� 10�4, the
damping ratio and modal frequency of the first bending mode are z1 ¼ 0.0118 and o1 ¼ 0.56Hz, those of
the second bending mode are z2 ¼ 0.0059 and o2 ¼ 3.40Hz, respectively.

The damping ratio of the first bending mode is larger than that of analytical study due to the air damping
effect. And the practical frequencies of the plate system are approximately equal to the analytical results, the
difference is mainly due to the effect of the bonded PZT and the material property is not uniform.
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The time response and curve envelope of the torsional mode without control is shown in Fig. 14(a), and the
frequency response shown in Fig. 14(b) can be obtained by FFT. The curve fitting of the frequency response
can be expressed as

G sð Þ ¼
1:075� 10�3 sþ 58:365ð Þ sþ 203:731ð Þ

sþ 0:156� 24:001ið Þ sþ 0:156þ 24:001ið Þ
. (43)

From Eq. (43) one obtains the zeros z5 ¼ �203.731 and z6 ¼ �58.365; the poles p5, 6 ¼ �0.156724.001i, the
gain is k2 ¼ 1.075� 10�3; the damping ratio and modal frequency of the first torsional mode are z3 ¼ 0.0065
and o3 ¼ 3.82Hz, respectively.

The identified modal frequencies are approximately equal to those of the analytical results. The differences
are mainly dependent on the effect of the bonding PZT patches and the parameter uncertainties. After
identification, the modal frequencies and damping ratios of the open-loop system for the cantilever plate are
obtained. And the modal frequencies are used to design PPF controller.

From Eqs. (42) and (43), it can be known that the zeros of the plate system are far away from the
imaginary axis, so the poles of the first three modes dominate the system. The pole map of the first three
modes is shown in Fig. 15. From Fig. 15, one can know that the poles of the first three modes locate in
the left half complex plane, thus the system is stable. When the control algorithms are applied to the plate
system, the closed-loop system is stable if the real parts of the eigenvalue are negative, and the system is
convergent.

5.4. Experimental study on active vibration control of the system

The time-domain closed-loop responses of the first bending mode are shown in Fig. 16, and those of the first
two bending modes are shown in Fig. 17. Figs. 16(a) and 17(a) show the closed-loop responses by using PD
control method. Figs. 16(b) and 17(b) show those of PPF control method, and Figs. 16(c) and 17(c) show
those of the control method by combining PPF and PD.

Comparing Figs. 16 and 17 with Figs. 9 and 10, respectively, it can be seen that the bending modes vibration
can be suppressed quickly. The proposed control method by combining PPF and PD can damp out the
vibration effectively. The vibration was suppressed approximately in 10 s.

The time-domain closed-loop responses of the torsional mode vibration control are shown in Fig. 18.
Fig. 18(a), (b) and (c) show the experimental results by using PD controller, PPF controller and the combining
PPF and PD controller, respectively. From these results one can know that PD control method can suppress
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Fig. 16. The controlled time-domain responses of the first bending mode: (a) PD control method; (b) PPF control method; and (c) the

control method by combining PPF and PD.

Z.-c. Qiu et al. / Journal of Sound and Vibration 301 (2007) 521–543540
the larger vibration amplitude significantly, but vibration of the smaller amplitude will last for a period
of time. PPF control method can suppress the smaller vibration amplitude significantly. The proposed
control method combining PPF and PD can reduce both the larger and the smaller vibration amplitudes
effectively.

Comparing all the experimental results with those of the simulation results, it can be seen that they are
approximately same. The existent differences mainly due to the following reasons: (a) the nonlinear behavior
of the actuators and sensors, such as saturation, dead zone, hysteretic nonlinearity; (b) process disturbance,
the inaccuracy of sensors and measured noise; and (c) the parameters of the host material and PZT can not be
accurately known, etc. The experimental results show that the optimal placement is feasible, and the proposed
control method can suppress the vibration effectively and shows good stability and convergence.
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Fig. 17. The controlled time-domain responses of the first two bending modes: (a) PD control method; (b) PPF control method; and (c)

the control method by combining PPF and PD.
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6. Conclusions

This paper presents the theoretical analysis and experimental results of vibration suppression of a
flexible cantilever plate bonded with PZT sensors and actuators. From the theoretical studies and
experimental results we can know that the presented method of optimal placement for the cantilever
plate is feasible. By using two-order Butterworth band-pass filter and average effect of multiple
piezoelectric ceramics, the decoupling of the bending and torsional modes is realized, and the spillover
problem can be prevented in the closed-loop bandwidth. Simulations and experimental results on
the actual process have shown that the proposed control method by combining PPF and PD can
suppress the vibration effectively, especially for vibration decay process and the smaller amplitude
vibration.
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Fig. 18. Experimental results for active control of torsional mode by different methods: (a) PD control method; (b) PPF control method;

(c) the control method by combining PPF and PD.
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